A model of Na-K-2Cl cotransport based on ordered ion binding and glide symmetry.
نویسندگان
چکیده
In the duck red blood cell, Na-K-2Cl cotransport exhibits two modes of ion movement: net cotransport and obligate cation exchange. In high-K cells, the predominant exchange is K/K (or K/Rb). In high-Na cells, it becomes Na/Na (or Na/Li). Both represent partial reactions in which a fully loaded carrier releases part of its cargo, rebinds fresh ions, and returns back across the membrane fully loaded. Net cotransport occurs when the carrier unloads completely and returns empty. This mode has a fixed stoichiometry of 1Na:1K:2Cl under all conditions tested. The ion requirements of the two exchanges differ: K/K exchange requires only K and Cl outside but all three ions inside. Na/Na exchange requires all three ions outside but only Na inside. We propose a simple model in which the carrier can only move when either fully loaded or completely empty and in which the ions bind in a strictly ordered sequence. For example, externally, a Na binds first and then a Cl, followed by a K and a second Cl. Internally, the first on is the first off (glide symmetry), so the Na is released first and then the first Cl, followed by the K and finally by the second Cl. Only then can the empty form return to the outside to start a new cycle.
منابع مشابه
Na+-K+-2Cl-cotransport in Ehrlich cells: regulation by protein phosphatases and kinases.
To identify protein kinases (PK) and phosphatases (PP) involved in regulation of the Na+-K+-2Cl-cotransporter in Ehrlich cells, the effect of various PK and PP inhibitors was examined. The PP-1, PP-2A, and PP-3 inhibitor calyculin A (Cal-A) was a potent activator of Na+-K+-2Cl-cotransport (EC50 = 35 nM). Activation by Cal-A was rapid (<1 min) but transient. Inactivation is probably due to a 10%...
متن کاملNO inhibits Na+-K+-2Cl- cotransport via a cytochrome P-450-dependent pathway in renal epithelial cells (MMDD1).
Nitric oxide (NO) exerts direct effects on nephron transport. We determined the effect of NO on Na(+)-K(+)-2Cl(-) cotransport in a cell line (MMDD1) with properties of macula densa. Na(+)-K(+)-2Cl(-) cotransport was measured as bumetanide-sensitive (86)Rb(+) uptake in the presence of ouabain. MMDD1 cells expressed mRNA for the neuronal isoform of nitric oxide synthase, as well as NKCC1 and NKCC...
متن کاملVasoconstriction triggered by hydrogen sulfide: Evidence for Na+,K+,2Cl-cotransport and L-type Ca2+ channel-mediated pathway
Objectives This study examined the dose-dependent actions of hydrogen sulfide donor sodium hydrosulphide (NaHS) on isometric contractions and ion transport in rat aorta smooth muscle cells (SMC). Methods Isometric contraction was measured in ring aortas segments from male Wistar rats. Activity of Na+/K+-pump and Na+,K+,2Cl-cotransport was measured in cultured endothelial and smooth muscle cel...
متن کاملAngiotensin II directly stimulates macula densa Na-2Cl-K cotransport via apical AT(1) receptors.
ANG II is a modulator of tubuloglomerular feedback (TGF); however, the site of its action remains unknown. Macula densa (MD) cells sense changes in luminal NaCl concentration ([NaCl](L)) via a Na-2Cl-K cotransporter, and these cells do possess ANG II receptors. We tested whether ANG II regulates Na-2Cl-K cotransport in MD cells. MD cell Na(+) concentration ([Na(+)](i)) was measured using sodium...
متن کاملModulation of rabbit ventricular cell volume and Na+/K+/2Cl- cotransport by cGMP and atrial natriuretic factor
Previously we showed that atrial natriuretic factor (ANF) decreases cardiac cell volume by inhibiting ion uptake by Na+/K+/2Cl- cotransport. Digital video microscopy was used to study the role of guanosine 3',5'-monophosphate (cGMP) in this process in rabbit ventricular myocytes. Each cell served as its own control, and relative cell volumes (volume(test)/volume(control)) were determined. Expos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 274 2 شماره
صفحات -
تاریخ انتشار 1998